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Perrin numbers that are palindromic concatenations of two repdigits
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Abstract

Let {P,}n>0 be the sequence of Perrin numbers defined by Py = 3, P, = 0,P, = 2 and P43 =
Phi1+P, foralln > 0. In this paper, we determine all Perrin numbers that are palindromic concatenations
of two repdigits.
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1 Introduction

1.1 Background

Consider the sequence of Perrin numbers {P, },>0, defined with the initial values Py = 3, P, =0, P, = 2,
and following the recurrence relation P, 13 = P41 + P, for all n > 0. The beginning of this sequence is:

3,0,2 3,25, 5,7, 10, 12, 17, 22, 29, 39, 51,....

A repdigit in base 10 is a positive integer N composed of repeated occurrences of a single digit. Specifically,

N can be expressed as:
‘_
N:d-~-d=d<10 1),
~—— 9

¢ times

where d and ¢ are positive integers, with 0 < d <9 and ¢ > 1.

This work builds upon prior research on the Diophantine properties of sequences generated by
recurrence relations, specifically examining terms that can be represented within the sequence or as
combinations of sequence terms. Despite the extensive work by Luca and Banks [3], their results provided
limited insights into the frequency of such terms within sequences. The problem of identifying Fibonacci
numbers formed by two repdigits was investigated in [I], revealing the largest such number as Fy4 = 377.

Further investigations into the connection between linear recurrence sequences and repdigits have
been carried out. For example, [I7] determined all repdigits formed by adding two Padovan numbers.
Ddamulira expanded this by exploring Padovan numbers that are concatenations of two distinct repdigits,
identifying P»; = 200 as the largest such number in [13].

Additional significant contributions to this area include works by Bedndiik and Trojovska [6],
Boussayoud et al. [7], and Bravo and Luca [9]. Among these, [5] identified the only Perrin numbers
that are concatenations of two distinct repdigits as P, € {10,12,17,22,29,39,51, 68,90, 119,227, 644}.

This result from [5] was derived using different methodologies. A logical extension of this research
would be to identify Perrin numbers that are palindromic concatenations of two repdigits. A number is
considered a palindrome if it reads the same forwards and backwards. As a preliminary step, we focus on
a more specific Diophantine equation:

P,=dy...dydy...dady...dy, (1.1)
—_—
£ times m times £ times
where di,dy € {0,1,2,...,9} and d; > 0. Similar investigations, such as in [10], have proven that 151

and 616 are the only Padovan numbers that are palindromic concatenations of two distinct repdigits.
Here, we present the following result.
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1.2 Main Results

Theorem 1.1. 22 is the only Perrin number that is a palindromic concatenation of two repdigits.

2 Methods

2.1 Preliminaries

For all n > 0, the Binet formula for the Perrin numbers tells us that the nt" Perrin number is given by

P, =a" + " +7", (2.1)
where
a:ﬁ-l-?“z, ﬂ:—(r1+7"2)+i(\/§(7“1—7"2)) and v =5,
6 6
with
31+ 69 31 — 69
n=—g and re= e

Moreover, the characteristic equation for the Perrin sequence is given by ¢(x) = 2® —x — 1 = 0 with zeros

«,  and ~ as defined above. Numerically, the following estimates hold for the quantities {«a, 8,v}:
1.32 < a < 1.33,

0.86 < |8 = |7| = o~ < 0.87.

Here we can see that the complex conjugate roots 8 and -y have minor contributions to the right—hand
side of ([2.1). More specifically, if
e(n) =P, —a" =" +9",

then

le(n)] < for all n > 0.

3
an/2
Next, the following estimate also holds.

Lemma 2.1. Let n > 2 be a positive integer, then
an72 S Pn S an+1.

Proof. The proof of Lemma follows from a simple inductive argument, and the fact that a® = a + 1,
from the characteristic polynomial ¢. O

Additionally, we note that (1.1]) can be written as

Py = — (dy - 107 — (dy — da) - 10T + (dy — da) - 10° — dy) , (2.2)

O =

so that 1
a"tl > p = 5 (di - 10%F™ — (dy — d2) - 10°7™ + (dy — do) - 10° — dy) > 10%T™,

or a"t! > 10%¢+™=1  Taking logs on both sides yields
204+m—2<n. (2.3)

Let K := Q(«, ) be the splitting field of the polynomial ¢ over Q. Then [K : Q] = 6 and [Q(«) : Q] = 3.
We note that the Galois group of K/Q is given by

G = Gal(K/Q) = {(1), (ap), (ay), (87), (af7)} = Ss.

We therefore identify the automorphisms of G with the permutation group of the zeroes of ¢. We
highlight the permutation («8), corresponding to the automorphism o : « — 3,8 — @, — ~, which we
use later to obtain a contradiction on the size of the absolute value of a certain bound.
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2.2 Linear Forms in Logarithms

We use three times Baker—type lower bounds for nonzero linear forms in three logarithms of algebraic
numbers. There are many such bounds mentioned in the literature like that of Baker and Wiistholz from
[2] or Matveev from [I8]. Before we can formulate such inequalities, we need the notion of height of an
algebraic number recalled below.

Definition 2.1 (Logartihmic height). Let v be an algebraic number of degree d with minimal primitive
polynomial over the integers, given by

ao:r +a1x —I— —i—ad—aon—

where the leading coefficient ag is positive. Then the logarithmic height of v is given by

d
1 .
hivy) = 7 (log ap + E log max{|y], 1}) :

i=1

In particular, if « is a rational number represented as v := p/q with coprime integers p and ¢ > 1,
then

h(v) = log max{|pl, ¢}.

The following properties of the logarithmic height function A(-) will be used in the rest of the paper
without further reference:

h(v1 £ 7v2) < h(71) + h(y2) +1og2,

h(vy
h(mys ) < hin) + h(v2),
h(~®) = |s|h() wvalid for s € Z.

A linear form in logarithms is an expression

A:=bilogy + -+ + bt logye, (2.4)

where for us 71, ..., are positive real algebraic numbers and b1, ..., b; are non—zero integers. We assume
A # 0. We need lower bounds for |A]. We write K := Q(71,...,7:) and D for the degree of K. We start
with the general form due to Matveev in [18].

Theorem 2.1 (Matveev, [18]). Put T :=~% ... 4% —1=¢" — 1. Assume T # 0. Then
log [T > —1.4-30"" - t*5. D*(1 +log D)(1 4 log B)A; - - - Ay,

where B > max{|b1|,...,|b:|} and A; > max{Dh(v;),|log~;|,0.16} for alli=1,...,t.

2.3 Reduction Methods

Typically, the estimates from Matveev’s theorem are excessively large to be practical in computations. To
refine these estimates, we employ a modified approach based on the Baker—Davenport reduction method.
Our adaptations follow the method introduced by Dujella and Petho ([I4], Lemma 5). When considering
a real number 7, we use ||r|| to represent the smallest distance between r and any nearest integer which
is formally written as min{|r — n| : n € Z}.

Lemma 2.2 (Dujella & Petho, [14]). Let 7 # 0 and A, B, i be real numbers with A > 0 and B > 1. Let
M > 1 be a positive integer and suppose that p/q is a convergent of the continued fraction expansion of T
with ¢ > 6M . Let

& := |lpgll = Mll|qll]-

If € > 0, then there is no solution of the inequality
0<|mr—n+pu <AB™F,

in positive integers m,n, k with
log(Ag/e)

> M.
log B >k and m<
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Finally, we present an analytical argument which is Lemma 7 in [16].
Lemma 2.3 (Lemma 7 in [16]). If m > 1, T > (4m?)™ and T > Z/(log Z)™, then
Z <2™T(logT)™.

SageMath was used to perform all the computations in this work.

3 Proof of Theorem 1.1

3.1 The Low Range n < 700

Using a basic SageMath script, we investigated all possible solutions to the Diophantine equation
for parameters dy,ds € {0,...,9} with d; > 0. We restricted our search to 1 < £,m < n < 700, where ¢
and m are the lengths of the two blocks of repeated digits in P,. We found only one solution, which is
given in Theorem [I.I] Henceforth, we assume n > 700.

3.2 The Initial Bound on n
We now proceed to examine (|1.1) in different ways. We first prove the following result.

Lemma 3.1. Let I, m and n > 700 be solutions to the Diophantine equation (1.1|), then

1 <4.1-10"logn.
Proof. We go back to (2.2) and rewrite it using (2.1) as

1
a" B+ =5 (dy - 10%F™ — (dy — do) - 10°7™ + (dy — do) - 10° — dy)
9(a" 4+ B +4") =dy - 102 — (dy — dp) - 1077 + (dy — dp) - 10° — dy,
9a™ — dy - 10*T™ = —9e(n) — (d1 — dg) - 10°T™ + (dy — dy) - 10° — d;.

Therefore we have that

|90 — dy - 10*F| = |=9e(n) — (dy — da) - 10°T + (dy — da) - 10° — d4 |
< 27a™™? 4 27.104™,

so that [9a™ — dy - 102¢7™| < 28 - 10°F™, for all n > 700. Dividing both sides by dy - 102F™ we get

9
Q™ 107%™ 1] < 28-107" (3.1)
1

Let
I'=(9/dy)-a™ 107%™ — 1.
Notice that " # 0 otherwise we would have

n

dl . 102l+m
Q= —

9

If this is the case, then applying the automorphism ¢ on both sides of the above equation and taking
absolute values we have that

102l+m . dl

| = leam) =187 < 1,

1<)

which is false. Thus I" # 0. We use the field Q(«) with


Abarna Sivakumar
  ISAR International Journal of Mathematics and Computing Techniques-Volume8-Issue4-2024


ISAR International Journal of Mathematics and Computing Techniques-Volume8-lssue4-2024

Moreover,

1
h(M\) = h (dgl) < 2h(9) :=2log9 < 5, h(As) := h(a) = °§a7 h(\s) := h(10) := log 10,

so we can take A; :=3-5 =15, Ay := 3(loga)/3 = loga, A3 = 3 -log10 = 3log 10. Now, by Theorem
2] we have

logT' > —1.4-30°-3%5.32. (1 4+1log3)(1 +logn) - 15-loga - 3log 10 > —9.3 - 10" log n. (3.2)
Comparing and , we get
llog 10 — log 28 < 9.3 - 10" log n,
which leads to [ < 4.1 - 10" logn for all n > 700. O
Next, we prove the following.
Lemma 3.2. Let I, m and n > 700 be solutions to the Diophantine equation ,Then
m < 1.6 - 10*"(log n)?.

Proof. Again we go back to (2.2]) and rewrite it with (2.1]) as,

1
" + "+ =5 (di - 10%F™ — (dy — d2) - 10°7™ + (dy — do) - 10° — dy)
9(a™ + " +4") =dp - 10*T™ — (dy — dy) - 10T 4 (dy — dy) - 10° — dy,
9a™ — dy - 103 + (dy — dy) - 10°T™ = —9e(n) + (dy — d3) - 10° — dj.
Taking absolute values both sides, we have
|90 — dy - 10*F™ + (dy — da) - 10°7™| < |=9e(n) + (di — da) - 10° — d;

<2707 ™% 418 10"
<1910,

for all n > 700. Now, dividing both sides by (dy - 10" — (dy — d3)) - 10+™ we get

9
(dy - 10t — (dy — d3))

19
Q107 - 2107 < 19-107™. 3.3
«@ S (100 (dy —da)) < (3.3)

Let
9

(dy - 108 — (dy — d2))

Clearly, I'1 # 0 otherwise we would have

r, = o107 -

(dy - 10" — (dy — dy)) - 10'T™
5 .

a =

Applying the automorphism o on both sides of the above equation and taking absolute values we have

that

9 ol an
1< (dy 10" — (dy — da)) =lo(a™)| = 8" <1,

which is false. We thus have that I'; # 0. We can use the field Q(«) with:

9
= = =1
A1 (d1 R 10l — (dl — dz)), )‘2 «, )\3 07
by =1, by :=mn, by i =—l—m,
B :=n, D =3, t:=3.
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Moreover,

9
h(A1) :=h
o= (@)
< 2(log9+1log9 + llog 10 + log 9 + log 9 + 2log 2) < 8log9 + 2{log 10 + 4 log 2
< 8log 9+ 4log 2+ 2(4.1-10" logn)log 10 < 1.9 - 10 log n,

) < 2(h(9) + h(dy) + h(10") + h(dy) + h(da) + 2log?)

so we can take A; :=3-1.9-10"logn = 5.7 - 10" logn, and as before Ay =loga and Az = 31og 10 .
By Theorem [2:1]

logT'y > —1.4-30°-3%5.32. (1 +1og3)(1 +logn)-5.7-10" logn - log o - 3log 10

> —3.5-10%" - (logn)? (3.4)
Comparing (3.3) to (3.4), we get m < 1.6 - 1027 (log n)z, for all n > 700. O

Lastly in this sub—section, we prove the following

Lemma 3.3. Let I, m and n > 700 be solutions to the Diophantine equation , Then,
0 < 4.6-10%, m < 2.0-10% and  n<28-10%.
Proof. Once more, we go back to and rewrite it with as
9a™ — (dy - 107™ — (dy — dy) - 10™ + (dy — dy)) - 10" = —9e(n) — d;.
Therefore, we have that
|90 — (dy - 10" — (dy — da) - 10™ + (d1 — d2)) - 10| = | — 9e(n) — d1| < 9e(n) + 9 < 10,

where we used the fact that n > 700. Now, dividing both sides by 9a™, we get

di 10" — (dy —dp) 10" + (dy —dp) .y (o (| 10 . (3.5)
9 9
Let
r, = G100 — (di - ng) 10" (di=d2) | n gy
Clearly, I's # 0 otherwise we would have,
g 10 — (dy — dp) - 10™ + (dy — da) 100,

9

Now, applying the automorphism o on both sides of the above equation as before and taking absolute
values, we get

’(dl - 10Hm™ — (d1 — dg) -10™ + (d1 — dg)
1< 9

which is false. Hence I'y # 0. We again use the field Q(«) with
dy - 10t+m — (dl — d2) -10™ + (dl — dg)

)10 = ot = 157 < 1,

A= 5 , Ao = q, Az := 10,
by =1, by := —n, by =1,
D:=3, t:=3, Ay := Dh()\y).

Notice that
h()\l) =h < - ( : 92) ( : 2))

< h(9) + (I + m)h(10) + h(d; — d2) + mh(10) + h(dy — d2) + 3log2

< 7log9+ (I + m)log10 + mlog10

< Tlog9 + ((4.1-10"logn + 1.6 - 10°" (logn)?) log 10 + 1.6 - 10*" (log n)? log 10)
< 6.0-10%"(logn)?,


Abarna Sivakumar
  ISAR International Journal of Mathematics and Computing Techniques-Volume8-Issue4-2024


ISAR International Journal of Mathematics and Computing Techniques-Volume8-Issue4-2024

so we can take A; :=3-6.0-10%"(logn)? := 1.8 - 10*®(log n)?, and as before A3 = log v and A3 = 3log 10.
By Theorem

logTy > —1.4-30%-3%5.32. (1 +1log3)(1 +logn) - 1.8 - 10%(logn)? - log a - 31og 10. (3.6)

Comparing (3.5 and (3.6]), we get
nloga —log10 < 1.1 - 10* (logn)?,
which leads to n < 3.9 - 104 (logn)3, for all n > 700.
To proceed from here, let 2 = n,m = 3,7 = 3.9 - 10*', then Lemma implies that n <
23 .39 - 104 (1og3.9-10*1)3 or n < 2.8 - 10*®. Moreover, Lemma gives I < 4.1-10%1logn <

4.1 - 10 1og (2.8-10%®) < 4.6 - 10" and Lemma gives m < 1.6 - 10*"(logn)> < m < 1.6 -
10%"(log (2.8 - 10%%))2 < 2.0 - 103! O

The bounds established in Lemma [3.3|cannot practically be computed and therefore require reduction.
We now proceed with the reduction process in Subsection [3.3

3.3 The reduction process
Here, we apply Lemma [2.2] as follows. First, we return to the inequality [3.1] and put

r=2 gno10-@m
dy

Inequality (3.1)) can be rewritten as || < 28 - 107!, If we assume that [ > 2, then 28 - 10~/ < 0.5 holds.
Assume for a moment [ > 2, then

|log (T'+1)] < 1.5|T,
so that

log (j) +nloga — (21 4+ m)log 10‘ <42-107%
1

Dividing through by log v gives,

9
log 10 log (le) 42
—-n+

21 1074
(2 +m) log o log o log o
So we apply Lemma [2.2] with the data
log 10 log (d1/9) 42
= d)=—"——""—=, d1€{1,2,...,9}, A:= , B:=10, k:=1L
4 loga’ uich) log o &4 } log o

Since 21 +m — 2 < n, then we can take M := 2.8 - 10*®. With the help of SageMath with the code in
Appendix 2, we find that the convergent

P _ ps7 _ 3265182491485655981489358337246995432669831208061478

q qsy  362926510191645833704423315164618426146198842188725

is such that ¢ = gs7 > 6 M. Furthermore, it gives € > 0.4883316119 and thus [ < 54. Therefore, we have
that [ < 54. The case | < 2 also holds because | < 2 < 54.
Next, for fixed dq,ds € {0,1,2,...,9} with d; > 0 and 1 < < 54, we return to the inequality (3.3)

and put
9

di - 10 — (dy — da)

From inequality (3.3), we have |I'1] < 19 - 107™. Assume that m > 2, then log(I'; + 1) < 1.5|T'1| holds.
We therefore have

r, = o107 -

9
1 1 —( log 10 30-107".
Og(dl‘lol—(dl—dg))+n oga — (I+m)log10| <
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Dividing through by log a, we get

di-10' —(d1—d2)
log 10 log (7 R ) 30
—-n+ < =107
log o log o log o

Thus, we apply Lemma [2.2] with the quantities

log <d1~10l—9(d1—d2)) 30

R d17d2€{071,2,...,9} and dy >0 A:=

ﬂ(dl,dg) = s B = ].O7 k=m.

log « log o

Since [ +m < 2l +m, we set M := 2.8 - 10*® as an upper bound on [ +m. With the help of a simple
computer program in SageMath (Appendix 3), we get that ¢ > 0.4994348950, and therefore m < 57. The
case m < 2 holds as well since m < 2 < 57.

Lastly, for fixed dy,dy € {0,1,2,...,9} with dy > 0, 1 < m < 57, and 1 < [ < 54, we return to
inequality (3.5) and put

.1 l+m _ _ . 10™ _
F2 _ d1 0 (dl dg) 0™ + (dl d2) L 10l —1.
9

From inequality (3.5)), we have that |I's| < (10/9) - @~™. Since n > 700, the right-hand side of this
inequality is less than 1/2, thus the above inequality implies that

dy - 107%™ — (dy — do) - 10™ + (dy —d2)>‘ _ 20 _,

9 9

lloglO—nloga+log< 9

Dividing through the above inequality by log o yields

log (d1-10l+7n7(d17%2)-10m'+(d1 7d2) )

llog 10 " < 20 N
log o log v 9log

Again, we apply Lemma 2.2 with the quantities

log <d1~101+m—(d1—%2)'10m+(d1—d2)) 90

. 9loga’

w(dy, dy) == B:i=a, k=n, M:=28-10%.

log « ’
With the help of a simple computer program in SageMath (Appendix 4), we get £ > 0.4995600863 and
thus n < 517, contradicting our working assumption that n > 700. Hence, Theorem holds.

Conclusion

In this study, we have demonstrated that 22 is the only Perrin number that can be expressed as a
palindromic concatenation of two repdigits. This finding parallels previous research on Lucas numbers,
which similarly identified no instances of Lucas numbers exhibiting such palindromic properties, see [4].
Further investigation into the concatenation of two k—generalized Perrin numbers, extending beyond the
classical Perrin sequence, remains an open and intriguing area for future research. This exploration aims
to uncover whether similar palindromic structures exist within the realm of generalized Perrin sequences,
potentially shedding light on deeper connections and patterns within this family of sequences.
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Appendices

Appendix 1

def generate_perrin_sequence(n):
Perrin = [3, 0, 2] # Initial Perrin numbers
while len(Perrin) < n:
Perrin.append(Perrin[-2] + Perrin[-3])
return Perrin # Return the list of Perrin numbers

def is_palindromic(number) :
# Check if the number is palindromic
return str(number) == str(number) [::-1]

def generate_palindromic_perrin_numbers():
palindromic_perrin_numbers = set()

perrin_numbers = generate_perrin_sequence(700) # Generate first 700 Perrin numbers

for perrin_number in perrin_numbers:
perrin_str = str(perrin_number)

# Check if the number is even length and palindromic

if len(perrin_str) % 2 == 0 and is_palindromic(perrin_number) :
half_length = len(perrin_str) // 2
first_half = perrin_str[:half_length]
palindromic_number = int(first_half + first_half[::-1])

# Check if the palindromic number is a Perrin number
if palindromic_number in perrin_numbers:
palindromic_perrin_numbers.add(palindromic_number)

return palindromic_perrin_numbers

# Generate and print palindromic Perrin numbers
palindromic_perrin_numbers = generate_palindromic_perrin_numbers()
print("Palindromic Perrin numbers:")
print(sorted(palindromic_perrin_numbers))

Appendix 2

from sage.all import *

# Constants

rl = (31 + sqrt(69)) / 8

r2 = (31 - sqrt(69)) / 8

a= (rl +r2) /6 # This is the value of alpha

a = a.n(digits=1000) # Ensure the precision is 1000 digits
tau = (log(10) / log(a)).n(digits=1000)

A = (42 / log(a))
B =10
M=2.8 x 10748

# Continued Fraction and Convergents
cf_tau = continued_fraction(tau)
convergents = cf_tau.convergents()
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for d1 in range(l, 10): # Iterate through d1 from 1 to 9
mu = (log(d1/9) / log(a)).n(digits=1000)

DD

[1 # Initialize empty list for results for each di

# Dujella and Petho Reduction Method
for i, convergent in enumerate(convergents):
P, q = convergent.numerator(), convergent.denominator ()
ep = abs(mu * q - round(mu * q)) - M * abs(tau * q - round(tau * q))

if g > 6 * M and ep > O:
log_expr_a = (log(A * q / ep) / log(B)).n(digits=10)
DD.append((i, ep.n(digits=10), log_expr_a))
print(f"d1 = {d1}, p_{i}/q_{i} = {p}/{a}")
break # Stop after finding the first suitable convergent for this dil

# Results for each di
if DD:
print (f"Results for di1 = {d1}:")
print ("First few elements of DD:", DD[:1])

else:
print (f"No suitable convergent found for di = {di}.")
print("Continued fraction expansion of tau:", cf_taul[:20])
Appendix 3

from sage.all import *

# Constants

rl = (31 + sqrt(69)) / 8

r2 = (31 - sqrt(69)) / 8

a=(rl +1r2) /6 # This is the value of alpha

a = a.n(digits=1000) # Ensure the precision is 1000 digits
tau = (log(10) / log(a)).n(digits=1000)

A = (30 / log(a))
B =10
M=2.8 % 10748

# Continued Fraction and Convergents
cf_tau = continued_fraction(tau)
convergents = cf_tau.convergents()

# Variables to store maximum values
max_ep = -Infinity
max_log_expr_a = -Infinity

for d1 in range(1, 10):
for d2 in range(0, 10):

for 1 in range(1l, 54):
mu = (log((dl * 1071 - (d1 - d2)) / 9) / log(a)).n(digits=1000)

# Dujella and Petho Reduction Method
for i, convergent in enumerate(convergents):
P, 9 = convergent.numerator(), convergent.denominator ()
ep = abs(mu * q - round(mu * q)) - M * abs(tau * q - round(tau * q))
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if g > 6 * M and ep > O:
log_expr_a = (log(A * q / ep) / log(B)).n(digits=10)
if ep > max_ep:
max_ep = ep.n(digits=10)
if log_expr_a > max_log_expr_a:
max_log_expr_a = log_expr_a
break # Stop after finding the first suitable convergent

# Print maximum values

print ("Maximum ep across all combinations:", max_ep)
print ("Maximum log_expr_a across all combinations:", max_log_expr_a)
Appendix 4

from sage.all import *
# Constants
rl = (31 + sqrt(69)) / 8
r2 = (31 - sqrt(69)) / 8
a=(rl +r2) /6 # This is the value of alpha
a = a.n(digits=1000) # Ensure the precision is 1000 digits
tau = (log(10) / log(a)).n(digits=1000)
A= (20 / (9 x log(a)))
B=a
M =12.8 % 10748
# Continued Fraction and Convergents
cf_tau = continued_fraction(tau)
convergents = cf_tau.convergents()
# Variables to store maximum values
max_ep = -Infinity
max_log_expr_a = -Infinity
# Iterate through combinations of dl1, d2, 1, and m
for d1 in range(l, 10):
for d2 in range(0, 10):

for 1 in range(1l, 54):
for m in range(1l, 57):
mu = (log((dl * 10" (1+m) - (d1 - d2) * 10°m +
(d1 - d2)) / 9) / log(a)).n(digits=1000)
# Dujella and Petho Reduction Method
for convergent in convergents:
P, q = convergent.numerator(), convergent.denominator ()
ep = abs(mu * q - round(mu * q)) - M * abs(tau * q - round(tau * q))
if g > 6 * M and ep > O:
log_expr_a = (log(A * q / ep) / log(B)).n(digits=10)
if ep > max_ep:
max_ep = ep.n(digits=10)
if log_expr_a > max_log_expr_a:
max_log_expr_a = log_expr_a
break # Stop after finding the first suitable convergent
# Print maximum values
print ("Maximum ep across all combinations:", max_ep)
print ("Maximum log_expr_a across all combinations:", max_log_expr_a)
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